Fossil range: Early Cretaceous
125-122 Mya
Sinosauropteryx prima
An undescribed fossil specimen labeled Sinosauropteryx on display in the Hong Kong Science Museum.
Scientific classification









Family (Unranked)





Ji & Ji, 1996


Sinosauropteryx (meaning "Chinese lizard-wing"[1]) is the first and most primitive genus of dinosaur found with the fossilized impressions of feathers. It lived in China during the Early Cretaceous period and may have been a close relative of Compsognathus. It was the first dinosaur genus discovered in the famous Liaoning Province. The largest known specimens are 1-1.20 meters (3 ft) in length, most of which was taken up by its extremely long tail. The remarkably well-preserved fossils show that Sinosauropteryx was covered with a furry down of very simple feathers - though some contention arose with an alternative interpretation of the filamentous impression as collagen fiber remains. These filaments consisted of a simple two-branched structure, roughly similar to the secondarily primitive feathers of the modern kiwi.

Three specimens have been assigned to Sinosauropteryx prima: the holotype GMV 2123 (NIGP 127586), NIGP 127587, D 2141. The assignment of a fourth, larger specimen to S. prima was later found to be in error.[2][3]


Sinosauropteryx scale

Average size compared with a human.

Sinosauropteryx prima is among the smallest known non-avian theropods, with the type specimen (a nearly mature individual) measuring only 68 centimeters (2.2 ft) in length, including a very long tail.[4] The largest known specimens reach up to 98 cm (3 ft) in length.[5] Sinosauropteryx is distinguished from other small dinosaurs by several features, including having a skull longer than its upper leg bone (femur) and very short, stout forelimbs, with the arms being only 30% the length of the legs. Overall, Sinosauropteryx had proportionately shorter limbs than its close relative Compsognathus.

In addition, Sinosauropteryx had several features unique among all other theropods (bipedal, mainly carnivorous dinosaurs). S. prima had 64 vertebrae in its tail, giving it the longest tail relative to body length of any theropod. It also had very large fingers for its small arms, with the second finger and claw being longer than the entire lower arm (radius).


Despite its feathers, most palaeontologists do not consider Sinosauropteryx to be birds. Phylogenetically, the genus is only distantly related to the clade Aves, usually defined as Archaeopteryx lithographica plus modern birds. The scientists who described Sinosauropteryx, however, used a character-based, or apomorphic, definition of the Class Aves, in which any animal with feathers is considered to be a bird. They argued that the filamentous plumes of Sinosauropteryx represent true feathers with a rachis and barbs, and thus that Sinosauropteryx should be considered a true bird.[8] They classified the genus as belonging to a new biological order, Sinosauropterygiformes, family Sinosauropterygidae, within the subclass Sauriurae.[9] These proposals have not been accepted, and Sinosauropteryx is generally classified in the family Compsognathidae,[1][2][10] a group of small-bodied long-tailed coelurosaurian theropods known from the Late Jurassic and Early Cretaceous of Asia, Europe, and South America.[11]

Below is a cladogram showing the placement of Sinosauropteryx within Coelurosauria by Senter et al. in 2012.


















Headline text Edit

aail. In a later paper, Ji, Ji and colleagues changed their opinion and suggested GMV 2124 is probably a new taxon.[2] In 2007, Gishlick and Gauthier supported their conclusion and tentatively re-classified this specimen as Sinosauropteryx? sp., though it may belong in a new genus.[3]


Mounted cast of a Sinosauropteryx? sp. skeleton, Zoological Museum, Copenhagen.

Sinosauropteryx is important because it had feather-like structures, yet was not very closely related to the previous "first bird" Archaeopteryx.[4] There are many dinosaur families that were more closely related to Archaeopteryx than Sinosauropteryx was, including the deinonychosaurians, the oviraptorosaurians, and the therizinosauroids. This indicates that feathers may have been a characteristic of many theropod dinosaurs, not just the obviously bird-like ones, making it possible that equally distant animals such as Ornitholestes, Coelurus, and Compsognathus had feathers as well, although their close proximity to the origin of feathers and the presence of scales on Juravenator and Tyrannosaurus make the distribution of feathers in primitive coelurosaurs extremely difficult to estimate accurately.

Most paleontologists do not consider Sinosauropteryx to be a bird, because phylogenetically, it lies far from the clade Aves, usually defined as Archaeopteryx + modern birds. The scientists who discovered and described Sinosauropteryx, however, used a character-based (apomorphy) definition of the Class Aves, that is, any animal with feathers is a bird. They argued that the filamentous plumes of Sinosauropteryx represent true feathers with a rachis and barbs, and therefore that Sinosauropteryx should be considered a true bird.[6] They classified it as belonging to a new biological order, Sinosauropterygiformes, family Sinosauropterygidae, within the subclass Sauriurae.[1]



The specimen NIGP 127587 was preserved with the remains of a lizard (complete with skull) in its stomach, indicating that small, fast-moving animals made up part of the diet of Sinosauropteryx prima. Numerous lizards of this type had previously been found in the same rocks as Sinosauropteryx but have yet to be described.[4]

Another possible Sinosauropteryx specimen, GMV 2124 (Sinosauropteryx? sp.), was found with three mammal jaws in its stomach region. Hurum, Luo & Kielan-Jaworowska identified two of these jaws as belonging to Zhangheotherium and the third to Sinobaatar, showing that these two mammals were part of the animal's diet. Interestingly, Zhangheotherium is known to have had a venom-secreting spur, like the modern platypus, showing that they fed on possibly venomous mammals.[7]


In the same specimen of S. prima that preserved the complete stomach contents including a lizard (NIGP 127587), several small eggs were also discovered in the abdomen. Two eggs were preserved just in front of and above the pubic boot, and several more may lie underneath them on the slab. It is unlikely that these were eaten by the animal, as they were in the wrong part of the body cavity for the egg shells to have remained intact. It is more likely that these are unlaid eggs produced by the animal itself.

Each egg measured 36 millimeters (1.4 inch) long by 26 mm (1 in) wide. The total length of this individual was 1.07 m (3.5 ft).[4]



Type specimen of Sinosauropteryx prima with impressions of integumentary filaments.

All specimens of Sinosauropteryx preserve integumentary structures (filaments arising from the skin) which most paleontologists interpret as very primitive feathers. These short, down-like filaments are preserved all along the back half of the skull, arms, neck, back, and top and bottom of the tail. Additional patches of feathers have been identified on the sides of the body, and paleontologist Chen, Dong and Zheng proposed that the density of the feathers on the back and the randomness of the patches elsewhere on the body indicated the animals would have been fully feathered in life, with the ventral feathers having been removed by decomposition.[4]

The filaments are preserved with a gap between the bones, which several authors have noted corresponds closely to the expected amount of skin and muscle tissue that would have been present in life. The feathers adhere close to the bone on the skull and end of the tail, where little to no muscle was present, and the gap increases over the back vertebrae, where more musculature would be expected, indicating that the filaments were external to the skin and do not correspond with sub-cutaneous structures.[4]

The random positioning of the filaments and often "wavy" lines of preservation indicate that they were soft and pliable in life. Examination with microscopes shows that each individual filament appears dark along the edges and light internally, suggesting that they were hollow, like modern feathers. Compared to modern mammals the filaments were quite coarse, with each individual strand much larger and thicker than the corresponding hairs of similarly sized mammals.[4]

The length of the filaments varied across the body. They were shortest just in front of the eyes, with a length of 13 mm. Going further down the body, the filaments rapidly increase in length until reaching 35 mm long over the shoulder blades. The length remains uniform over the back, until beyond the hips, when the filaments lengthen again and reach their maximum length midway down the tail at 40 mm. The filaments on the underside of the tail are shorter overall and decrease in length more rapidly than those on the dorsal surface. By the 25th tail vertebrae, the filaments on the underside reach a length of only 35 mm. The longest feathers present on the forearm measured 14 mm.[4]

Though the feathers are too dense to isolate a single structure for examination, several studies have suggested that the presence of two distinct types of filament (thick and thin) interspersed with each other, the tendancy for the thick filaments to appear 'stiffer' than thin filaments, and the tendancy of thin fillaments to lie parallel to each other but at angles to nearby thick filaments, suggests that the individual feathers consisted of a central quill (rachis) with thinner barbs branching off from it, similar to but more primitive in structure than modern bird feathers.[8] Overall, the filaments most closely resemble the "plumules" or down-like feathers of some modern birds, with a thick central quill and long, thin barbs. The same structures are seen in other fossils from the Yixian Formation, including Confuciusornis.[4]


The fossils of Sinosauropteryx have shown an alternation of lighter and darker bands preserved on the tail, which may give an indication of what the animal looked like in life. Chen and colleagues initially interpreted this banding pattern as an artifact of the splitting between the main slab and counter-slab in which the original specimen was preserved.[4] However, in a 2002 lecture and corresponding abstract for the Society of Vertebrate Paleontology, paleontologist Nick Longrich suggested that these specimens actually preserve remnants of the original coloration pattern the animal would have exhibited in life. He argued that the dark, banded stains on the tail were too evenly spaced to have been caused by random separation of the fossil slabs, and that they represent fossilized pigments present in the feathers. Additionally, rather than an artifact of preservation or decomposition, the presence of dark feathers along only the top of the body may also reflect the color pattern in life, indicating that Sinosauropteryx prima was countershaded with dark coloration on its back and lighter coloration on its underside, with bands or stripes on the tail for camouflage. [9]


Some researchers have interpreted the filamentous impressions around Sinosauropteryx fossils as remains of collagen fibers, rather than primitive feathers. Since they are clearly external to the body, these researchers have proposed that the fibers formed a frill on the back of the animal and underside of its tail, similar to some modern aquatic lizards.[10]

This would refute the proposal that Sinosauropteryx is the most basal known theropod genus with feathers, and also questions the current theory of feather origins itself. It calls into question the idea that the first feathers evolved not for flight but for insulation, and that they made their first appearance in relatively basal dinosaur lineages that later evolved into modern birds.[11]



  1. ^ a b Ji, Q., and Ji, S. (1996). "On discovery of the earliest bird fossil in China and the origin of birds." Chinese Geology 10 (233): 30-33.
  2. ^ a b Ji, S., Gao, C., Liu, J., Meng, Q., and Ji, Q. (2007). "New material of Sinosauropteryx (Theropoda: Compsognathidae) from western Liaoning, China." Acta Geologica Sinica (English Edition) 81(2):177-182.
  3. ^ a b Gishlick & Gauthier (2007). "On the manual morphology of Compsognathus longipes and its bearing on the diagnosis of Compsognathidae." Zoological Journal of the Linnean Society, 149: 569–581.
  4. ^ a b c d e f g h i j Chen, P., Dong, Z. and Zhen, S. (1998). "An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China." Nature, 391(8): 147-152.
  5. ^ Therrien, F.; and Henderson, D.M. (2007). "My theropod is bigger than yours...or not: estimating body size from skull length in theropods". Journal of Vertebrate Paleontology 27 (1): 108–115. doi:10.1671/0272-4634(2007)27[108:MTIBTY]2.0.CO;2. 
  6. ^ Ji, Q., and Ji, S. (1997). "Advances in Sinosauropteryx Research." Chinese Geology, 7: 30-32.
  7. ^ Hurum, Jørn H.; Luo, Zhe-Xi & Kielan-Jaworowska, Zofia (2006): Were mammals originally venomous? Acta Palaeontologica Polonica 51(1): 1–11.PDF fulltext
  8. ^ Currie, P.J. and Chen, P.-j. (2001). "Anatomy of Sinosauropteryx prima from Liaoning, northeastern China." Canadian Journal of Earth Sciences, 38(1): 705-727.
  9. ^ Longrich, N. (2002). "Sinosauropteryx systematics." 62nd Annual Meeting of the Society of Vertebrate Paletontology, 80A.
  10. ^ Lingham-Soliar, T et al. (2007) Proc. R. Soc. Lond. B doi:10.1098/rspb.2007.0352.
  11. ^ Access : Bald dino casts doubt on feather theory : Nature News

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.