Fossil Wiki
Advertisement

The Permian–Triassic (P–Tr) extinction event, informally known as the Great Dying, was an extinction event that occurred 251.4 million years ago, forming the boundary between the Permian and Triassic geologic periods. It was the Earth's most severe extinction event, with up to 96 percent of all marine species and 70 percent of terrestrial vertebrate species becoming extinct; it is the only known mass extinction of insects. 57% of all families and 83% of all genera were killed off. Because so much biodiversity was lost, the recovery of life on earth took significantly longer than after other extinction events. This event has been described as the "mother of all mass extinctions". The pattern of extinction is still disputed, as different studies suggest one to three different pulses. There are several proposed mechanisms for the extinctions; the earlier peak was likely due to gradualistic environmental change, while the later was probably due to a catastrophic event. Possible mechanisms for the latter include large or multiple bolide impact events, increased volcanism, or sudden release of methane hydrates from the sea floor; gradual changes include sea-level change, anoxia, increasing aridity, and a shift in ocean circulation driven by climate change.

Dating the extinction[]

Until 2000, it was thought that rock sequences spanning the Permian–Triassic boundary were too few and contained too many gaps for scientists to determine reliably its details.[20] Based on high-precision U-Pb zircon dates for five volcanic ash beds from the Global Stratotype Section and Point for the Permian-Triassic boundary at Meishan, China, define an age model for the extinction and allow exploration of the links between global environmental perturbation, carbon cycle disruption, mass extinction, and recovery at millennial timescales. The extinction occurred between 251.941 ± 0.037 and 251.880 ± 0.031 Ma, an duration of 60 ± 48 ka.[21] A large (approximately 0.9%), abrupt global decrease in the ratio of the stable isotope 13C to that of 12C, coincides with this extinction,[18][22][23][24][25] and is sometimes used to identify the Permian–Triassic boundary in rocks that are unsuitable for radiometric dating.[26] Further evidence for environmental change around the P–Tr boundary suggests an 8 °C (14 °F) rise in temperature,[18] and an increase in CO2 levels by 2000 ppm (by contrast, the concentration immediately before the industrial revolution was 280 ppm.)[18] There is also evidence of increased ultraviolet radiation reaching the earth causing the mutation of plant spores.[18]

It has been suggested that the Permian–Triassic boundary is associated with a sharp increase in the abundance of marine and terrestrial fungi, caused by the sharp increase in the amount of dead plants and animals fed upon by the fungi.[27] For a while this "fungal spike" was used by some paleontologists to identify the Permian–Triassic boundary in rocks that are unsuitable for radiometric dating or lack suitable index fossils, but even the proposers of the fungal spike hypothesis pointed out that "fungal spikes" may have been a repeating phenomenon created by the post-extinction ecosystem in the earliest Triassic.[27] The very idea of a fungal spike has been criticized on several grounds, including that: Reduviasporonites, the most common supposed fungal spore, was actually a fossilized alga;[18][28] the spike did not appear worldwide;[29][30] and in many places it did not fall on the Permian–Triassic boundary.[31] The algae, which were misidentified as fungal spores, may even represent a transition to a lake-dominated Triassic world rather than an earliest Triassic zone of death and decay in some terrestrial fossil beds.[32] Newer chemical evidence agrees better with a fungal origin for Reduviasporonites, diluting these critiques.[33]

Uncertainty exists regarding the duration of the overall extinction and about the timing and duration of various groups' extinctions within the greater process. Some evidence suggests that there were multiple extinction pulses[7] or that the extinction was spread out over a few million years, with a sharp peak in the last million years of the Permian.[31][34] Statistical analyses of some highly fossiliferous strata in Meishan, Zhejiang Province in South China, suggest that the main extinction was clustered around one peak.[11] Recent research shows that different groups became extinct at different times; for example, while difficult to date absolutely, ostracod and brachiopod extinctions were separated by 670 to 1170 thousand years.[35] In a well-preserved sequence in east Greenland, the decline of animals is concentrated in a period 10 to 60 thousand years long, with plants taking several hundred thousand additional years to show the full impact of the event.[36] An older theory, still supported in some recent papers,[7][37] is that there were two major extinction pulses 9.4 million years apart, separated by a period of extinctions well above the background level, and that the final extinction killed off only about 80% of marine species alive at that time while the other losses occurred during the first pulse or the interval between pulses. According to this theory one of these extinction pulses occurred at the end of the Guadalupian epoch of the Permian.[7][38] For example, all but one of the surviving dinocephalian genera died out at the end of the Guadalupian,[39] as did the Verbeekinidae, a family of large-size fusuline foraminifera.[40] The impact of the end-Guadalupian extinction on marine organisms appears to have varied between locations and between taxonomic groups—brachiopods and corals had severe losses.

Extinction patterns[]

Marine organisms[]

Marine invertebrates suffered the greatest losses during the P–Tr extinction. Evidence of this was found in samples from south China sections at the P–Tr boundary. Here, 286 out of 329 marine invertebrate genera disappear within the final 2 sedimentary zones containing conodonts from the Permian.[11] The decrease in diversity was probably caused by a sharp increase in extinctions, rather than a decrease in speciation.[44]

The extinction primarily affected organisms with calcium carbonate skeletons, especially those reliant on stable CO2 levels to produce their skeletons.[45] These organisms were susceptible to the effects of the ocean acidification that resulted from increased atmospheric CO2.

Among benthic organisms, the extinction event multiplied background extinction rates, and therefore caused most damage to taxa that had a high background extinction rate (by implication, taxa with a high turnover).[46][47] The extinction rate of marine organisms was catastrophic.[11][48][49][50]

Surviving marine invertebrate groups include: articulate brachiopods (those with a hinge), which have suffered a slow decline in numbers since the P–Tr extinction; the Ceratitida order of ammonites; and crinoids ("sea lilies"), which very nearly became extinct but later became abundant and diverse.

The groups with the highest survival rates generally had active control of circulation, elaborate gas exchange mechanisms, and light calcification; more heavily calcified organisms with simpler breathing apparatus were the worst hit.[16][51] In the case of the brachiopods at least, surviving taxa were generally small, rare members of a diverse community.[52]

The ammonoids, which had been in a long-term decline for the 30 million years since the Roadian (middle Permian), suffered a selective extinction pulse 10 million years before the main event, at the end of the Capitanian stage. In this preliminary extinction, which greatly reduced disparity, that is the range of different ecological guilds, environmental factors were apparently responsible. Diversity and disparity fell further until the P–Tr boundary; the extinction here was non-selective, consistent with a catastrophic initiator. During the Triassic, diversity rose rapidly, but disparity remained low.[53]

The range of morphospace occupied by the ammonoids, that is the range of possible forms, shape or structure, became more restricted as the Permian progressed. Just a few million years into the Triassic, the original range of ammonoid structures was once again reoccupied, but the parameters were now shared differently among clades.

Terrestrial invertebrates[]

The Permian had great diversity in insect and other invertebrate species, including the largest insects ever to have existed. The end-Permian is the only known mass extinction of insects,[8] with eight or nine insect orders becoming extinct and ten more greatly reduced in diversity. Palaeodictyopteroids (insects with piercing and sucking mouthparts) began to decline during the mid-Permian; these extinctions have been linked to a change in flora. The greatest decline occurred in the Late Permian and was probably not directly caused by weather-related floral transitions.[48]

Most fossil insect groups found after the Permian–Triassic boundary differ significantly from those that lived prior to the P–Tr extinction. With the exception of the Glosselytrodea, Miomoptera, and Protorthoptera, Paleozoic insect groups have not been discovered in deposits dating to after the P–Tr boundary. The caloneurodeans, monurans, paleodictyopteroids, protelytropterans, and protodonates became extinct by the end of the Permian. In well-documented Late Triassic deposits, fossils overwhelmingly consist of modern fossil insect groups.

Terrestrial plants[]

Plant ecosystem response[]

The geological record of terrestrial plants is sparse and based mostly on pollen and spore studies. Interestingly, plants are relatively immune to mass extinction, with the impact of all the major mass extinctions "insignificant" at a family level.[18] Even the reduction observed in species diversity (of 50%) may be mostly due to taphonomic processes.[18] However, a massive rearrangement of ecosystems does occur, with plant abundances and distributions changing profoundly and all the forests virtually disappearing;[18][55] the Palaeozoic flora scarcely survived this extinction.[56]

At the P–Tr boundary, the dominant floral groups changed, with many groups of land plants entering abrupt decline, such as Cordaites (gymnosperms) and Glossopteris (seed ferns).[57] Dominant gymnosperm genera were replaced post-boundary by lycophytes—extant lycophytes are recolonizers of disturbed areas.[58]

Palynological or pollen studies from East Greenland of sedimentary rock strata laid down during the extinction period indicate dense gymnosperm woodlands before the event. At the same time that marine invertebrate macrofauna declined, these large woodlands died out and were followed by a rise in diversity of smaller herbaceous plants including Lycopodiophyta, both Selaginellales and Isoetales. Later, other groups of gymnosperms again become dominant but again suffered major die offs. These cyclical flora shifts occurred a few times over the course of the extinction period and afterwards. These fluctuations of the dominant flora between woody and herbaceous taxa indicate chronic environmental stress resulting in a loss of most large woodland plant species. The successions and extinctions of plant communities do not coincide with the shift in δ13C values, but occurred many years after.[30] The recovery of gymnosperm forests took 4–5 million years.

Coal gap[]

No coal deposits are known from the Early Triassic, and those in the Middle Triassic are thin and low-grade.[19] This "coal gap" has been explained in many ways. It has been suggested that new, more aggressive fungi, insects and vertebrates evolved, and killed vast numbers of trees. These decomposers themselves suffered heavy losses of species during the extinction, and are not considered a likely cause of the coal gap.[19] It could simply be that all coal forming plants were rendered extinct by the P–Tr extinction, and that it took 10 million years for a new suite of plants to adapt to the moist, acid conditions of peat bogs.[19] On the other hand, abiotic factors (not caused by organisms), such as decreased rainfall or increased input of clastic sediments, may also be to blame.[18] Finally, it is also true that there are very few sediments of any type known from the Early Triassic, and the lack of coal may simply reflect this scarcity. This opens the possibility that coal-producing ecosystems may have responded to the changed conditions by relocating, perhaps to areas where we have no sedimentary record for the Early Triassic.[18] For example, in eastern Australia a cold climate had been the norm for a long period of time, with a peat mire ecosystem specialising to these conditions. Approximately 95% of these peat-producing plants went locally extinct at the P–Tr boundary;[59] Interestingly, coal deposits in Australia and Antarctica disappear significantly before the P–Tr boundary.

Terrestrial vertebrates[]

There is enough evidence to indicate that over two-thirds of terrestrial labyrinthodont amphibians, sauropsid ("reptile") and therapsid ("mammal-like reptile") families became extinct. Large herbivores suffered the heaviest losses. All Permian anapsid reptiles died out except the procolophonids (testudines have anapsid skulls but are most often thought to have evolved later, from diapsid ancestors). Pelycosaurs died out before the end of the Permian. Too few Permian diapsid fossils have been found to support any conclusion about the effect of the Permian extinction on diapsids (the "reptile" group from which lizards, snakes, crocodilians, and dinosaurs [including birds] evolved).[60][61] Even the groups that survived suffered extremely heavy losses of species, and some terrestrial vertebrate groups very nearly became extinct at the end-Permian. Some of the surviving groups did not persist for long past this period, while others that barely survived went on to produce diverse and long-lasting lineages. Yet it took 30 million years for the terrestrial vertebrate fauna to fully recover both numerically and ecologically.

Possible explanations of these patterns[]

An analysis of marine fossils from the Permian's final Changhsingian stage found that marine organisms with low tolerance for hypercapnia (high concentration of carbon dioxide) had high extinction rates, while the most tolerant organisms had very slight losses.

The most vulnerable marine organisms were those that produced calcareous hard parts (i.e., from calcium carbonate) and had low metabolic rates and weak respiratory systems—notably calcareous sponges, rugose and tabulate corals, calcite-depositing brachiopods, bryozoans, and echinoderms; about 81% of such genera became extinct. Close relatives without calcareous hard parts suffered only minor losses, for example sea anemones, from which modern corals evolved. Animals with high metabolic rates, well-developed respiratory systems, and non-calcareous hard parts had negligible losses—except for conodonts, in which 33% of genera died out.[63]

This pattern is consistent with what is known about the effects of hypoxia, a shortage but not a total absence of oxygen. However, hypoxia cannot have been the only killing mechanism for marine organisms. Nearly all of the continental shelf waters would have had to become severely hypoxic to account for the magnitude of the extinction, but such a catastrophe would make it difficult to explain the very selective pattern of the extinction. Models of the Late Permian and Early Triassic atmospheres show a significant but protracted decline in atmospheric oxygen levels, with no acceleration near the P–Tr boundary. Minimum atmospheric oxygen levels in the Early Triassic are never less than present day levels—the decline in oxygen levels does not match the temporal pattern of the extinction.[63]

Marine organisms are more sensitive to changes in CO2 levels than are terrestrial organisms for a variety of reasons. CO2 is 28 times more soluble in water than is oxygen. Marine animals normally function with lower concentrations of CO2 in their bodies than land animals, as the removal of CO2 in air-breathing animals is impeded by the need for the gas to pass through the respiratory system's membranes (lungs' alveolus, tracheae, and the like), even when CO2 diffuses more easily than oxygen. In marine organisms, relatively modest but sustained increases in CO2 concentrations hamper the synthesis of proteins, reduce fertilization rates, and produce deformities in calcareous hard parts.[63] In addition, an increase in CO2 concentration is inevitably linked to ocean acidification, consistent with the preferential extinction of heavily calcified taxa and other signals in the rock record that suggest a more acidic ocean.[64]

It is difficult to analyze extinction and survival rates of land organisms in detail, because few terrestrial fossil beds span the Permian–Triassic boundary. Triassic insects are very different from those of the Permian, but a gap in the insect fossil record spans approximately 15 million years from the late Permian to early Triassic. The best-known record of vertebrate changes across the Permian–Triassic boundary occurs in the Karoo Supergroup of South Africa, but statistical analyses have so far not produced clear conclusions.[63] However, analysis of the fossil river deposits of the floodplains indicate a shift from meandering to braided river patterns, indicating an abrupt drying of the climate.[65] The climate change may have taken as little as 100,000 years, prompting the extinction of the unique Glossopteris flora and its herbivores, followed by the carnivorous guild.

Biotic recovery[]

Mantell's Iguanodon restoration
Advertisement