Fossil Wiki
Advertisement

The Marsupial Lion (Thylacoleo carnifex; or meat cutting-marsupial-lion; or pouch-lion-butcher) is an extinct species of carnivorous marsupial mammal that lived in Australia from the early to the late Pleistocene (1.6 million–35 thousand years ago). Despite its name, it is not closely related to the lion but is a member of the order Diprotodontia, one of the taxonomic groups of Australian marsupials.

Description[]

A species of Thylacoleo, it is the largest meat-eating mammal known to have ever existed in Australia, and one of the larger metatherian carnivores of the world (comparable to Thylacosmilus and Borhyaena species, but smaller than Proborhyaenidae). Individuals ranged up to around 75 cm (30 in) high at the shoulder and about 150 cm (59 in) from head to tail. Measurements taken from a number of specimens show they averaged 101 to 130 kg (223 to 287 lb) in weight, although individuals as large as 124–160 kg (273–353 lb) might not have been uncommon, and the largest weight was of 128–164 kg (282–362 lb). This would make it comparable to female lions and female tigers in general size.

The animal was extremely robust with powerfully built jaws and very strong forelimbs. It possessed retractable claws, a unique trait among marsupials. This would have allowed the claws to remain sharp by protecting them from being worn down on hard surfaces. The claws were well-suited to securing prey and for climbing trees. The first digits ("thumbs") on each hand were semi-opposable and bore an enlarged claw. Palaeontologists believe this would have been used to grapple its intended prey, as well as providing it with a sure footing on tree trunks and branches. The hind feet had four functional toes, the first digit being much reduced in size, but possessing a roughened pad similar to that of possums, which may have assisted with climbing. The discovery in 2005 of a specimen which included complete hind feet provided evidence that the marsupial lion exhibited syndactyly (fused second and third toes) like other diprotodonts.

The species hindquarters were also well-developed, although to a lesser extent than the front of the animal. Remains of the animal show it had a relatively thick and strong tail and the vertebrae possessed chevrons on their undersides where the tail would have contacted the ground. These would have served to protect critical elements such as nerves and blood vessels if the animal used its tail to support itself when on its hind legs, much like present day kangaroos do. Taking this stance would free up its fore limbs to tackle or slash at its intended victim. The discovery of complete skeletons preserving both the tail and clavicles (collarbones) in Australia's Komatsu Cave in the town of Naracoorte and Flight Star Cave in the Nullarbor Plain, indicate the marsupial lion had a thick, stiff tail that comprised half the spinal column's length. The tail may have been used in novel behaviors not seen in other marsupials, and was probably held aloft continuously. The discovery of the clavicle indicates that the marsupial lion may have had a similar type of locomotion to the modern Tasmanian devil.

Evolutionary relationships[]

The ancestors of thylacoleonids are believed to have been herbivores, something unusual for carnivores. Cranial features and arboreal characteristics suggest that thylacoleonids share a common ancestor with wombats. While other continents were sharing many of their predators amongst themselves, as they were connected by land, Australia's isolation caused many of its normally docile herbivorous species to turn carnivorous. Possum-like features were once thought to indicate that the marsupial lion's evolutionary path was from a phalangeriform ancestor, however, scientists agree that more prominent features suggest a vombatiform ancestry. However, the recently discovered Microleo is a possum-like animal.

Dentition[]

The marsupial lion was a highly specialised carnivore, as is reflected in its dentition. Like other diprotodonts, it possessed enlarged incisors on both the upper (maxillae) and lower (mandibles) jaws. These teeth (the lower in particular) were shaped much more like the pointed canine teeth of animals such as dogs and cats than those of kangaroos. The most unusual feature of the creature's dentition were the huge, blade-like carnassial premolars on either side of its jaws. The top and bottom carnassials worked together like shears and would have been very effective at slicing off chunks of flesh from carcasses and cutting through bone.

The jaw muscle of the marsupial lion was exceptionally large for its size, giving it an extremely powerful bite. Biometric calculations show, considering size, it had the strongest bite of any known mammal, living or extinct; a 101 kg (223 lb) individual would have had a bite comparable to that of a 250 kg (550 lb) African lion. A comparative study of bite force in relation to the body mass of fossil and modern species, found the greatest relative force exerted by the jaws would have been this species and Priscileo roskellyae. Using 3D modeling based on X-ray computed tomography scans, marsupial lions were found to be unable to use the prolonged, suffocating bite typical of living big cats. They instead had an extremely efficient and unique bite; the incisors would have been used to stab at and pierce the flesh of their prey while the more specialised carnassials crushed the windpipe, severed the spinal cord, and lacerated the major blood vessels such as the carotid artery and jugular vein. Compared to an African lion which may take 15 minutes to kill a large catch, the marsupial lion could kill a large animal in less than a minute. The skull was so specialized for big game that it was very inefficient at catching smaller animals, which possibly contributed to its extinction.

Classification[]

The marsupial lion is classified in the order Diprotodontia along with many other well-known marsupials such as kangaroos, possums, and the koala. It is further classified in its own family, the Thylacoleonidae, of which three genera and 11 species are recognised, all extinct. The term marsupial lion (lower case) is often applied to other members of this family. Distinct possum-like characteristics led Thylacoleo to be regarded as members of Phalangeroidea for a few decades. Though a few authors continued to hint at phalangeroid affinities for thylacoleonids as recently as the 1990s, cranial and other characters have generally led to their inclusion within vombatiformes, and as stem-members of the wombat lineage. Marsupial lions and other ecologically and morphologically diverse vombatiforms were once represented by over 60 species of carnivorous, herbivorous, terrestrial and arboreal forms ranging in size from 3 kg to 2.5 tonnes. Only two families represented by four herbivorous species (koalas and three species of wombat) have survived into modern times and are considered the marsupial lion's closest living relatives.

Fossils[]

Fossils of the marsupial lion have been found at several sites in Australia since the mid-19th century. A complete articulated skeleton was discovered in limestone caves under the Nullarbor Plain in 2002. The ends of the limb bones were not fully fused, indicating the animal was not full-grown.

Unlike most fossils, these bones were not mineralised and had been preserved in this state for about 500,000 years by the low humidity and cool temperature of the cave. The partial remains of 10 other individuals were found in this or nearby caves, along with hundreds of other specimens of other animals.

The animals apparently fell to their deaths tens of metres below, through narrow openings in the roof of the caves known as sinkholes. The caves and sinkholes were formed by groundwater slowly dissolving and eroding the limestone forming the bed of the plain (once a shallow sea).

Possible marsupial lion trace fossils have been found in a lake bed in south-western Victoria, along with trackways of a vombatid, the diprotodontid Diprotodon optatum, and a macropodid. The footprints were imprinted over a short period of time which may suggest an association between the marsupial lion and the other taxa present. In addition, marsupial lion body fossils have been found in the same area and are dated around the same time as its trace fossils, a coincidence that is extremely rare and that may aid in a more complete assessment of the biodiversity in Australia during the Pleistocene epoch. Other fossils found at the site have bite marks that were presumably caused by the marsupial lion.

Behavior[]

Advertisement